mirror of
https://github.com/fankes/moshi.git
synced 2025-10-19 07:59:21 +08:00
Convert LinkedHashTreeMap to Kotlin (#1508)
* Initial pass at converting LinkedHashTreeMap to Kotlin * Update tests as needed * Remove Arrays use * Separate find nullability * Clean up a few expression bodies * Various little cleanups and warnings * Sprinkle in some knownNotNulls where useful * add() is not implemented * clean up some visibility and properties that can be fields * Some minor formatting * Some minor formatting
This commit is contained in:
@@ -1,855 +0,0 @@
|
|||||||
/*
|
|
||||||
* Copyright (C) 2010-2012 Square, Inc.
|
|
||||||
*
|
|
||||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
* you may not use this file except in compliance with the License.
|
|
||||||
* You may obtain a copy of the License at
|
|
||||||
*
|
|
||||||
* https://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
*
|
|
||||||
* Unless required by applicable law or agreed to in writing, software
|
|
||||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
* See the License for the specific language governing permissions and
|
|
||||||
* limitations under the License.
|
|
||||||
*/
|
|
||||||
package com.squareup.moshi;
|
|
||||||
|
|
||||||
import java.io.ObjectStreamException;
|
|
||||||
import java.io.Serializable;
|
|
||||||
import java.util.AbstractMap;
|
|
||||||
import java.util.AbstractSet;
|
|
||||||
import java.util.Arrays;
|
|
||||||
import java.util.Comparator;
|
|
||||||
import java.util.ConcurrentModificationException;
|
|
||||||
import java.util.Iterator;
|
|
||||||
import java.util.LinkedHashMap;
|
|
||||||
import java.util.NoSuchElementException;
|
|
||||||
import java.util.Set;
|
|
||||||
import javax.annotation.Nullable;
|
|
||||||
|
|
||||||
/**
|
|
||||||
* A map of comparable keys to values. Unlike {@code TreeMap}, this class uses insertion order for
|
|
||||||
* iteration order. Comparison order is only used as an optimization for efficient insertion and
|
|
||||||
* removal.
|
|
||||||
*
|
|
||||||
* <p>This implementation was derived from Android 4.1's TreeMap and LinkedHashMap classes.
|
|
||||||
*/
|
|
||||||
final class LinkedHashTreeMap<K, V> extends AbstractMap<K, V> implements Serializable {
|
|
||||||
@SuppressWarnings({"unchecked", "rawtypes"}) // to avoid Comparable<Comparable<Comparable<...>>>
|
|
||||||
private static final Comparator<Comparable> NATURAL_ORDER =
|
|
||||||
new Comparator<Comparable>() {
|
|
||||||
public int compare(Comparable a, Comparable b) {
|
|
||||||
return a.compareTo(b);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
final Comparator<? super K> comparator;
|
|
||||||
Node<K, V>[] table;
|
|
||||||
final Node<K, V> header;
|
|
||||||
int size = 0;
|
|
||||||
int modCount = 0;
|
|
||||||
int threshold;
|
|
||||||
|
|
||||||
/** Create a natural order, empty tree map whose keys must be mutually comparable and non-null. */
|
|
||||||
LinkedHashTreeMap() {
|
|
||||||
this(null);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Create a tree map ordered by {@code comparator}. This map's keys may only be null if {@code
|
|
||||||
* comparator} permits.
|
|
||||||
*
|
|
||||||
* @param comparator the comparator to order elements with, or {@code null} to use the natural
|
|
||||||
* ordering.
|
|
||||||
*/
|
|
||||||
@SuppressWarnings({
|
|
||||||
"unchecked",
|
|
||||||
"rawtypes" // Unsafe! if comparator is null, this assumes K is comparable.
|
|
||||||
})
|
|
||||||
LinkedHashTreeMap(Comparator<? super K> comparator) {
|
|
||||||
this.comparator = comparator != null ? comparator : (Comparator) NATURAL_ORDER;
|
|
||||||
this.header = new Node<>();
|
|
||||||
this.table = new Node[16]; // TODO: sizing/resizing policies
|
|
||||||
this.threshold = (table.length / 2) + (table.length / 4); // 3/4 capacity
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public int size() {
|
|
||||||
return size;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public V get(Object key) {
|
|
||||||
Node<K, V> node = findByObject(key);
|
|
||||||
return node != null ? node.value : null;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public boolean containsKey(Object key) {
|
|
||||||
return findByObject(key) != null;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public V put(K key, @Nullable V value) {
|
|
||||||
if (key == null) {
|
|
||||||
throw new NullPointerException("key == null");
|
|
||||||
}
|
|
||||||
Node<K, V> created = find(key, true);
|
|
||||||
V result = created.value;
|
|
||||||
created.value = value;
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public void clear() {
|
|
||||||
Arrays.fill(table, null);
|
|
||||||
size = 0;
|
|
||||||
modCount++;
|
|
||||||
|
|
||||||
// Clear all links to help GC
|
|
||||||
Node<K, V> header = this.header;
|
|
||||||
for (Node<K, V> e = header.next; e != header; ) {
|
|
||||||
Node<K, V> next = e.next;
|
|
||||||
e.next = e.prev = null;
|
|
||||||
e = next;
|
|
||||||
}
|
|
||||||
|
|
||||||
header.next = header.prev = header;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public V remove(Object key) {
|
|
||||||
Node<K, V> node = removeInternalByKey(key);
|
|
||||||
return node != null ? node.value : null;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Returns the node at or adjacent to the given key, creating it if requested.
|
|
||||||
*
|
|
||||||
* @throws ClassCastException if {@code key} and the tree's keys aren't mutually comparable.
|
|
||||||
*/
|
|
||||||
Node<K, V> find(K key, boolean create) {
|
|
||||||
Comparator<? super K> comparator = this.comparator;
|
|
||||||
Node<K, V>[] table = this.table;
|
|
||||||
int hash = secondaryHash(key.hashCode());
|
|
||||||
int index = hash & (table.length - 1);
|
|
||||||
Node<K, V> nearest = table[index];
|
|
||||||
int comparison = 0;
|
|
||||||
|
|
||||||
if (nearest != null) {
|
|
||||||
// Micro-optimization: avoid polymorphic calls to Comparator.compare().
|
|
||||||
@SuppressWarnings("unchecked") // Throws a ClassCastException below if there's trouble.
|
|
||||||
Comparable<Object> comparableKey =
|
|
||||||
(comparator == NATURAL_ORDER) ? (Comparable<Object>) key : null;
|
|
||||||
|
|
||||||
while (true) {
|
|
||||||
comparison =
|
|
||||||
(comparableKey != null)
|
|
||||||
? comparableKey.compareTo(nearest.key)
|
|
||||||
: comparator.compare(key, nearest.key);
|
|
||||||
|
|
||||||
// We found the requested key.
|
|
||||||
if (comparison == 0) {
|
|
||||||
return nearest;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If it exists, the key is in a subtree. Go deeper.
|
|
||||||
Node<K, V> child = (comparison < 0) ? nearest.left : nearest.right;
|
|
||||||
if (child == null) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
nearest = child;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// The key doesn't exist in this tree.
|
|
||||||
if (!create) {
|
|
||||||
return null;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Create the node and add it to the tree or the table.
|
|
||||||
Node<K, V> header = this.header;
|
|
||||||
Node<K, V> created;
|
|
||||||
if (nearest == null) {
|
|
||||||
// Check that the value is comparable if we didn't do any comparisons.
|
|
||||||
if (comparator == NATURAL_ORDER && !(key instanceof Comparable)) {
|
|
||||||
throw new ClassCastException(key.getClass().getName() + " is not Comparable");
|
|
||||||
}
|
|
||||||
created = new Node<>(nearest, key, hash, header, header.prev);
|
|
||||||
table[index] = created;
|
|
||||||
} else {
|
|
||||||
created = new Node<>(nearest, key, hash, header, header.prev);
|
|
||||||
if (comparison < 0) { // nearest.key is higher
|
|
||||||
nearest.left = created;
|
|
||||||
} else { // comparison > 0, nearest.key is lower
|
|
||||||
nearest.right = created;
|
|
||||||
}
|
|
||||||
rebalance(nearest, true);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (size++ > threshold) {
|
|
||||||
doubleCapacity();
|
|
||||||
}
|
|
||||||
modCount++;
|
|
||||||
|
|
||||||
return created;
|
|
||||||
}
|
|
||||||
|
|
||||||
@SuppressWarnings("unchecked")
|
|
||||||
Node<K, V> findByObject(Object key) {
|
|
||||||
try {
|
|
||||||
return key != null ? find((K) key, false) : null;
|
|
||||||
} catch (ClassCastException e) {
|
|
||||||
return null;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Returns this map's entry that has the same key and value as {@code entry}, or null if this map
|
|
||||||
* has no such entry.
|
|
||||||
*
|
|
||||||
* <p>This method uses the comparator for key equality rather than {@code equals}. If this map's
|
|
||||||
* comparator isn't consistent with equals (such as {@code String.CASE_INSENSITIVE_ORDER}), then
|
|
||||||
* {@code remove()} and {@code contains()} will violate the collections API.
|
|
||||||
*/
|
|
||||||
Node<K, V> findByEntry(Entry<?, ?> entry) {
|
|
||||||
Node<K, V> mine = findByObject(entry.getKey());
|
|
||||||
boolean valuesEqual = mine != null && equal(mine.value, entry.getValue());
|
|
||||||
return valuesEqual ? mine : null;
|
|
||||||
}
|
|
||||||
|
|
||||||
private boolean equal(Object a, Object b) {
|
|
||||||
return a == b || (a != null && a.equals(b));
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Applies a supplemental hash function to a given hashCode, which defends against poor quality
|
|
||||||
* hash functions. This is critical because HashMap uses power-of-two length hash tables, that
|
|
||||||
* otherwise encounter collisions for hashCodes that do not differ in lower or upper bits.
|
|
||||||
*/
|
|
||||||
private static int secondaryHash(int h) {
|
|
||||||
// Doug Lea's supplemental hash function
|
|
||||||
h ^= (h >>> 20) ^ (h >>> 12);
|
|
||||||
return h ^ (h >>> 7) ^ (h >>> 4);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Removes {@code node} from this tree, rearranging the tree's structure as necessary.
|
|
||||||
*
|
|
||||||
* @param unlink true to also unlink this node from the iteration linked list.
|
|
||||||
*/
|
|
||||||
void removeInternal(Node<K, V> node, boolean unlink) {
|
|
||||||
if (unlink) {
|
|
||||||
node.prev.next = node.next;
|
|
||||||
node.next.prev = node.prev;
|
|
||||||
node.next = node.prev = null; // Help the GC (for performance)
|
|
||||||
}
|
|
||||||
|
|
||||||
Node<K, V> left = node.left;
|
|
||||||
Node<K, V> right = node.right;
|
|
||||||
Node<K, V> originalParent = node.parent;
|
|
||||||
if (left != null && right != null) {
|
|
||||||
|
|
||||||
/*
|
|
||||||
* To remove a node with both left and right subtrees, move an
|
|
||||||
* adjacent node from one of those subtrees into this node's place.
|
|
||||||
*
|
|
||||||
* Removing the adjacent node may change this node's subtrees. This
|
|
||||||
* node may no longer have two subtrees once the adjacent node is
|
|
||||||
* gone!
|
|
||||||
*/
|
|
||||||
|
|
||||||
Node<K, V> adjacent = (left.height > right.height) ? left.last() : right.first();
|
|
||||||
removeInternal(adjacent, false); // takes care of rebalance and size--
|
|
||||||
|
|
||||||
int leftHeight = 0;
|
|
||||||
left = node.left;
|
|
||||||
if (left != null) {
|
|
||||||
leftHeight = left.height;
|
|
||||||
adjacent.left = left;
|
|
||||||
left.parent = adjacent;
|
|
||||||
node.left = null;
|
|
||||||
}
|
|
||||||
int rightHeight = 0;
|
|
||||||
right = node.right;
|
|
||||||
if (right != null) {
|
|
||||||
rightHeight = right.height;
|
|
||||||
adjacent.right = right;
|
|
||||||
right.parent = adjacent;
|
|
||||||
node.right = null;
|
|
||||||
}
|
|
||||||
adjacent.height = Math.max(leftHeight, rightHeight) + 1;
|
|
||||||
replaceInParent(node, adjacent);
|
|
||||||
return;
|
|
||||||
} else if (left != null) {
|
|
||||||
replaceInParent(node, left);
|
|
||||||
node.left = null;
|
|
||||||
} else if (right != null) {
|
|
||||||
replaceInParent(node, right);
|
|
||||||
node.right = null;
|
|
||||||
} else {
|
|
||||||
replaceInParent(node, null);
|
|
||||||
}
|
|
||||||
|
|
||||||
rebalance(originalParent, false);
|
|
||||||
size--;
|
|
||||||
modCount++;
|
|
||||||
}
|
|
||||||
|
|
||||||
Node<K, V> removeInternalByKey(Object key) {
|
|
||||||
Node<K, V> node = findByObject(key);
|
|
||||||
if (node != null) {
|
|
||||||
removeInternal(node, true);
|
|
||||||
}
|
|
||||||
return node;
|
|
||||||
}
|
|
||||||
|
|
||||||
private void replaceInParent(Node<K, V> node, Node<K, V> replacement) {
|
|
||||||
Node<K, V> parent = node.parent;
|
|
||||||
node.parent = null;
|
|
||||||
if (replacement != null) {
|
|
||||||
replacement.parent = parent;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (parent != null) {
|
|
||||||
if (parent.left == node) {
|
|
||||||
parent.left = replacement;
|
|
||||||
} else {
|
|
||||||
assert (parent.right == node);
|
|
||||||
parent.right = replacement;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
int index = node.hash & (table.length - 1);
|
|
||||||
table[index] = replacement;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Rebalances the tree by making any AVL rotations necessary between the newly-unbalanced node and
|
|
||||||
* the tree's root.
|
|
||||||
*
|
|
||||||
* @param insert true if the node was unbalanced by an insert; false if it was by a removal.
|
|
||||||
*/
|
|
||||||
private void rebalance(Node<K, V> unbalanced, boolean insert) {
|
|
||||||
for (Node<K, V> node = unbalanced; node != null; node = node.parent) {
|
|
||||||
Node<K, V> left = node.left;
|
|
||||||
Node<K, V> right = node.right;
|
|
||||||
int leftHeight = left != null ? left.height : 0;
|
|
||||||
int rightHeight = right != null ? right.height : 0;
|
|
||||||
|
|
||||||
int delta = leftHeight - rightHeight;
|
|
||||||
if (delta == -2) {
|
|
||||||
Node<K, V> rightLeft = right.left;
|
|
||||||
Node<K, V> rightRight = right.right;
|
|
||||||
int rightRightHeight = rightRight != null ? rightRight.height : 0;
|
|
||||||
int rightLeftHeight = rightLeft != null ? rightLeft.height : 0;
|
|
||||||
|
|
||||||
int rightDelta = rightLeftHeight - rightRightHeight;
|
|
||||||
if (rightDelta != -1 && (rightDelta != 0 || insert)) {
|
|
||||||
assert (rightDelta == 1);
|
|
||||||
rotateRight(right); // AVL right left
|
|
||||||
}
|
|
||||||
rotateLeft(node); // AVL right right
|
|
||||||
if (insert) {
|
|
||||||
break; // no further rotations will be necessary
|
|
||||||
}
|
|
||||||
|
|
||||||
} else if (delta == 2) {
|
|
||||||
Node<K, V> leftLeft = left.left;
|
|
||||||
Node<K, V> leftRight = left.right;
|
|
||||||
int leftRightHeight = leftRight != null ? leftRight.height : 0;
|
|
||||||
int leftLeftHeight = leftLeft != null ? leftLeft.height : 0;
|
|
||||||
|
|
||||||
int leftDelta = leftLeftHeight - leftRightHeight;
|
|
||||||
if (leftDelta != 1 && (leftDelta != 0 || insert)) {
|
|
||||||
assert (leftDelta == -1);
|
|
||||||
rotateLeft(left); // AVL left right
|
|
||||||
}
|
|
||||||
rotateRight(node); // AVL left left
|
|
||||||
if (insert) {
|
|
||||||
break; // no further rotations will be necessary
|
|
||||||
}
|
|
||||||
|
|
||||||
} else if (delta == 0) {
|
|
||||||
node.height = leftHeight + 1; // leftHeight == rightHeight
|
|
||||||
if (insert) {
|
|
||||||
break; // the insert caused balance, so rebalancing is done!
|
|
||||||
}
|
|
||||||
|
|
||||||
} else {
|
|
||||||
assert (delta == -1 || delta == 1);
|
|
||||||
node.height = Math.max(leftHeight, rightHeight) + 1;
|
|
||||||
if (!insert) {
|
|
||||||
break; // the height hasn't changed, so rebalancing is done!
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Rotates the subtree so that its root's right child is the new root. */
|
|
||||||
private void rotateLeft(Node<K, V> root) {
|
|
||||||
Node<K, V> left = root.left;
|
|
||||||
Node<K, V> pivot = root.right;
|
|
||||||
Node<K, V> pivotLeft = pivot.left;
|
|
||||||
Node<K, V> pivotRight = pivot.right;
|
|
||||||
|
|
||||||
// move the pivot's left child to the root's right
|
|
||||||
root.right = pivotLeft;
|
|
||||||
if (pivotLeft != null) {
|
|
||||||
pivotLeft.parent = root;
|
|
||||||
}
|
|
||||||
|
|
||||||
replaceInParent(root, pivot);
|
|
||||||
|
|
||||||
// move the root to the pivot's left
|
|
||||||
pivot.left = root;
|
|
||||||
root.parent = pivot;
|
|
||||||
|
|
||||||
// fix heights
|
|
||||||
root.height =
|
|
||||||
Math.max(left != null ? left.height : 0, pivotLeft != null ? pivotLeft.height : 0) + 1;
|
|
||||||
pivot.height = Math.max(root.height, pivotRight != null ? pivotRight.height : 0) + 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Rotates the subtree so that its root's left child is the new root. */
|
|
||||||
private void rotateRight(Node<K, V> root) {
|
|
||||||
Node<K, V> pivot = root.left;
|
|
||||||
Node<K, V> right = root.right;
|
|
||||||
Node<K, V> pivotLeft = pivot.left;
|
|
||||||
Node<K, V> pivotRight = pivot.right;
|
|
||||||
|
|
||||||
// move the pivot's right child to the root's left
|
|
||||||
root.left = pivotRight;
|
|
||||||
if (pivotRight != null) {
|
|
||||||
pivotRight.parent = root;
|
|
||||||
}
|
|
||||||
|
|
||||||
replaceInParent(root, pivot);
|
|
||||||
|
|
||||||
// move the root to the pivot's right
|
|
||||||
pivot.right = root;
|
|
||||||
root.parent = pivot;
|
|
||||||
|
|
||||||
// fixup heights
|
|
||||||
root.height =
|
|
||||||
Math.max(right != null ? right.height : 0, pivotRight != null ? pivotRight.height : 0) + 1;
|
|
||||||
pivot.height = Math.max(root.height, pivotLeft != null ? pivotLeft.height : 0) + 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
private EntrySet entrySet;
|
|
||||||
private KeySet keySet;
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public Set<Entry<K, V>> entrySet() {
|
|
||||||
EntrySet result = entrySet;
|
|
||||||
return result != null ? result : (entrySet = new EntrySet());
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public Set<K> keySet() {
|
|
||||||
KeySet result = keySet;
|
|
||||||
return result != null ? result : (keySet = new KeySet());
|
|
||||||
}
|
|
||||||
|
|
||||||
static final class Node<K, V> implements Entry<K, V> {
|
|
||||||
Node<K, V> parent;
|
|
||||||
Node<K, V> left;
|
|
||||||
Node<K, V> right;
|
|
||||||
Node<K, V> next;
|
|
||||||
Node<K, V> prev;
|
|
||||||
final K key;
|
|
||||||
final int hash;
|
|
||||||
V value;
|
|
||||||
int height;
|
|
||||||
|
|
||||||
/** Create the header entry. */
|
|
||||||
Node() {
|
|
||||||
key = null;
|
|
||||||
hash = -1;
|
|
||||||
next = prev = this;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Create a regular entry. */
|
|
||||||
Node(Node<K, V> parent, K key, int hash, Node<K, V> next, Node<K, V> prev) {
|
|
||||||
this.parent = parent;
|
|
||||||
this.key = key;
|
|
||||||
this.hash = hash;
|
|
||||||
this.height = 1;
|
|
||||||
this.next = next;
|
|
||||||
this.prev = prev;
|
|
||||||
prev.next = this;
|
|
||||||
next.prev = this;
|
|
||||||
}
|
|
||||||
|
|
||||||
public K getKey() {
|
|
||||||
return key;
|
|
||||||
}
|
|
||||||
|
|
||||||
public V getValue() {
|
|
||||||
return value;
|
|
||||||
}
|
|
||||||
|
|
||||||
public V setValue(V value) {
|
|
||||||
V oldValue = this.value;
|
|
||||||
this.value = value;
|
|
||||||
return oldValue;
|
|
||||||
}
|
|
||||||
|
|
||||||
@SuppressWarnings("rawtypes")
|
|
||||||
@Override
|
|
||||||
public boolean equals(Object o) {
|
|
||||||
if (o instanceof Entry) {
|
|
||||||
Entry other = (Entry) o;
|
|
||||||
return (key == null ? other.getKey() == null : key.equals(other.getKey()))
|
|
||||||
&& (value == null ? other.getValue() == null : value.equals(other.getValue()));
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public int hashCode() {
|
|
||||||
return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode());
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public String toString() {
|
|
||||||
return key + "=" + value;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Returns the first node in this subtree. */
|
|
||||||
public Node<K, V> first() {
|
|
||||||
Node<K, V> node = this;
|
|
||||||
Node<K, V> child = node.left;
|
|
||||||
while (child != null) {
|
|
||||||
node = child;
|
|
||||||
child = node.left;
|
|
||||||
}
|
|
||||||
return node;
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Returns the last node in this subtree. */
|
|
||||||
public Node<K, V> last() {
|
|
||||||
Node<K, V> node = this;
|
|
||||||
Node<K, V> child = node.right;
|
|
||||||
while (child != null) {
|
|
||||||
node = child;
|
|
||||||
child = node.right;
|
|
||||||
}
|
|
||||||
return node;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
private void doubleCapacity() {
|
|
||||||
table = doubleCapacity(table);
|
|
||||||
threshold = (table.length / 2) + (table.length / 4); // 3/4 capacity
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Returns a new array containing the same nodes as {@code oldTable}, but with twice as many
|
|
||||||
* trees, each of (approximately) half the previous size.
|
|
||||||
*/
|
|
||||||
static <K, V> Node<K, V>[] doubleCapacity(Node<K, V>[] oldTable) {
|
|
||||||
// TODO: don't do anything if we're already at MAX_CAPACITY
|
|
||||||
int oldCapacity = oldTable.length;
|
|
||||||
@SuppressWarnings("unchecked") // Arrays and generics don't get along.
|
|
||||||
Node<K, V>[] newTable = new Node[oldCapacity * 2];
|
|
||||||
AvlIterator<K, V> iterator = new AvlIterator<>();
|
|
||||||
AvlBuilder<K, V> leftBuilder = new AvlBuilder<>();
|
|
||||||
AvlBuilder<K, V> rightBuilder = new AvlBuilder<>();
|
|
||||||
|
|
||||||
// Split each tree into two trees.
|
|
||||||
for (int i = 0; i < oldCapacity; i++) {
|
|
||||||
Node<K, V> root = oldTable[i];
|
|
||||||
if (root == null) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute the sizes of the left and right trees.
|
|
||||||
iterator.reset(root);
|
|
||||||
int leftSize = 0;
|
|
||||||
int rightSize = 0;
|
|
||||||
for (Node<K, V> node; (node = iterator.next()) != null; ) {
|
|
||||||
if ((node.hash & oldCapacity) == 0) {
|
|
||||||
leftSize++;
|
|
||||||
} else {
|
|
||||||
rightSize++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Split the tree into two.
|
|
||||||
leftBuilder.reset(leftSize);
|
|
||||||
rightBuilder.reset(rightSize);
|
|
||||||
iterator.reset(root);
|
|
||||||
for (Node<K, V> node; (node = iterator.next()) != null; ) {
|
|
||||||
if ((node.hash & oldCapacity) == 0) {
|
|
||||||
leftBuilder.add(node);
|
|
||||||
} else {
|
|
||||||
rightBuilder.add(node);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Populate the enlarged array with these new roots.
|
|
||||||
newTable[i] = leftSize > 0 ? leftBuilder.root() : null;
|
|
||||||
newTable[i + oldCapacity] = rightSize > 0 ? rightBuilder.root() : null;
|
|
||||||
}
|
|
||||||
return newTable;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Walks an AVL tree in iteration order. Once a node has been returned, its left, right and parent
|
|
||||||
* links are <strong>no longer used</strong>. For this reason it is safe to transform these links
|
|
||||||
* as you walk a tree.
|
|
||||||
*
|
|
||||||
* <p><strong>Warning:</strong> this iterator is destructive. It clears the parent node of all
|
|
||||||
* nodes in the tree. It is an error to make a partial iteration of a tree.
|
|
||||||
*/
|
|
||||||
static class AvlIterator<K, V> {
|
|
||||||
/** This stack is a singly linked list, linked by the 'parent' field. */
|
|
||||||
private Node<K, V> stackTop;
|
|
||||||
|
|
||||||
void reset(Node<K, V> root) {
|
|
||||||
Node<K, V> stackTop = null;
|
|
||||||
for (Node<K, V> n = root; n != null; n = n.left) {
|
|
||||||
n.parent = stackTop;
|
|
||||||
stackTop = n; // Stack push.
|
|
||||||
}
|
|
||||||
this.stackTop = stackTop;
|
|
||||||
}
|
|
||||||
|
|
||||||
public Node<K, V> next() {
|
|
||||||
Node<K, V> stackTop = this.stackTop;
|
|
||||||
if (stackTop == null) {
|
|
||||||
return null;
|
|
||||||
}
|
|
||||||
Node<K, V> result = stackTop;
|
|
||||||
stackTop = result.parent;
|
|
||||||
result.parent = null;
|
|
||||||
for (Node<K, V> n = result.right; n != null; n = n.left) {
|
|
||||||
n.parent = stackTop;
|
|
||||||
stackTop = n; // Stack push.
|
|
||||||
}
|
|
||||||
this.stackTop = stackTop;
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Builds AVL trees of a predetermined size by accepting nodes of increasing value. To use:
|
|
||||||
*
|
|
||||||
* <ol>
|
|
||||||
* <li>Call {@link #reset} to initialize the target size <i>size</i>.
|
|
||||||
* <li>Call {@link #add} <i>size</i> times with increasing values.
|
|
||||||
* <li>Call {@link #root} to get the root of the balanced tree.
|
|
||||||
* </ol>
|
|
||||||
*
|
|
||||||
* <p>The returned tree will satisfy the AVL constraint: for every node <i>N</i>, the height of
|
|
||||||
* <i>N.left</i> and <i>N.right</i> is different by at most 1. It accomplishes this by omitting
|
|
||||||
* deepest-level leaf nodes when building trees whose size isn't a power of 2 minus 1.
|
|
||||||
*
|
|
||||||
* <p>Unlike rebuilding a tree from scratch, this approach requires no value comparisons. Using
|
|
||||||
* this class to create a tree of size <i>S</i> is {@code O(S)}.
|
|
||||||
*/
|
|
||||||
static final class AvlBuilder<K, V> {
|
|
||||||
/** This stack is a singly linked list, linked by the 'parent' field. */
|
|
||||||
private Node<K, V> stack;
|
|
||||||
|
|
||||||
private int leavesToSkip;
|
|
||||||
private int leavesSkipped;
|
|
||||||
private int size;
|
|
||||||
|
|
||||||
void reset(int targetSize) {
|
|
||||||
// compute the target tree size. This is a power of 2 minus one, like 15 or 31.
|
|
||||||
int treeCapacity = Integer.highestOneBit(targetSize) * 2 - 1;
|
|
||||||
leavesToSkip = treeCapacity - targetSize;
|
|
||||||
size = 0;
|
|
||||||
leavesSkipped = 0;
|
|
||||||
stack = null;
|
|
||||||
}
|
|
||||||
|
|
||||||
void add(Node<K, V> node) {
|
|
||||||
node.left = node.parent = node.right = null;
|
|
||||||
node.height = 1;
|
|
||||||
|
|
||||||
// Skip a leaf if necessary.
|
|
||||||
if (leavesToSkip > 0 && (size & 1) == 0) {
|
|
||||||
size++;
|
|
||||||
leavesToSkip--;
|
|
||||||
leavesSkipped++;
|
|
||||||
}
|
|
||||||
|
|
||||||
node.parent = stack;
|
|
||||||
stack = node; // Stack push.
|
|
||||||
size++;
|
|
||||||
|
|
||||||
// Skip a leaf if necessary.
|
|
||||||
if (leavesToSkip > 0 && (size & 1) == 0) {
|
|
||||||
size++;
|
|
||||||
leavesToSkip--;
|
|
||||||
leavesSkipped++;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Combine 3 nodes into subtrees whenever the size is one less than a
|
|
||||||
* multiple of 4. For example we combine the nodes A, B, C into a
|
|
||||||
* 3-element tree with B as the root.
|
|
||||||
*
|
|
||||||
* Combine two subtrees and a spare single value whenever the size is one
|
|
||||||
* less than a multiple of 8. For example at 8 we may combine subtrees
|
|
||||||
* (A B C) and (E F G) with D as the root to form ((A B C) D (E F G)).
|
|
||||||
*
|
|
||||||
* Just as we combine single nodes when size nears a multiple of 4, and
|
|
||||||
* 3-element trees when size nears a multiple of 8, we combine subtrees of
|
|
||||||
* size (N-1) whenever the total size is 2N-1 whenever N is a power of 2.
|
|
||||||
*/
|
|
||||||
for (int scale = 4; (size & scale - 1) == scale - 1; scale *= 2) {
|
|
||||||
if (leavesSkipped == 0) {
|
|
||||||
// Pop right, center and left, then make center the top of the stack.
|
|
||||||
Node<K, V> right = stack;
|
|
||||||
Node<K, V> center = right.parent;
|
|
||||||
Node<K, V> left = center.parent;
|
|
||||||
center.parent = left.parent;
|
|
||||||
stack = center;
|
|
||||||
// Construct a tree.
|
|
||||||
center.left = left;
|
|
||||||
center.right = right;
|
|
||||||
center.height = right.height + 1;
|
|
||||||
left.parent = center;
|
|
||||||
right.parent = center;
|
|
||||||
} else if (leavesSkipped == 1) {
|
|
||||||
// Pop right and center, then make center the top of the stack.
|
|
||||||
Node<K, V> right = stack;
|
|
||||||
Node<K, V> center = right.parent;
|
|
||||||
stack = center;
|
|
||||||
// Construct a tree with no left child.
|
|
||||||
center.right = right;
|
|
||||||
center.height = right.height + 1;
|
|
||||||
right.parent = center;
|
|
||||||
leavesSkipped = 0;
|
|
||||||
} else if (leavesSkipped == 2) {
|
|
||||||
leavesSkipped = 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Node<K, V> root() {
|
|
||||||
Node<K, V> stackTop = this.stack;
|
|
||||||
if (stackTop.parent != null) {
|
|
||||||
throw new IllegalStateException();
|
|
||||||
}
|
|
||||||
return stackTop;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
abstract class LinkedTreeMapIterator<T> implements Iterator<T> {
|
|
||||||
Node<K, V> next = header.next;
|
|
||||||
Node<K, V> lastReturned = null;
|
|
||||||
int expectedModCount = modCount;
|
|
||||||
|
|
||||||
public final boolean hasNext() {
|
|
||||||
return next != header;
|
|
||||||
}
|
|
||||||
|
|
||||||
final Node<K, V> nextNode() {
|
|
||||||
Node<K, V> e = next;
|
|
||||||
if (e == header) {
|
|
||||||
throw new NoSuchElementException();
|
|
||||||
}
|
|
||||||
if (modCount != expectedModCount) {
|
|
||||||
throw new ConcurrentModificationException();
|
|
||||||
}
|
|
||||||
next = e.next;
|
|
||||||
return lastReturned = e;
|
|
||||||
}
|
|
||||||
|
|
||||||
public final void remove() {
|
|
||||||
if (lastReturned == null) {
|
|
||||||
throw new IllegalStateException();
|
|
||||||
}
|
|
||||||
removeInternal(lastReturned, true);
|
|
||||||
lastReturned = null;
|
|
||||||
expectedModCount = modCount;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
final class EntrySet extends AbstractSet<Entry<K, V>> {
|
|
||||||
@Override
|
|
||||||
public int size() {
|
|
||||||
return size;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public Iterator<Entry<K, V>> iterator() {
|
|
||||||
return new LinkedTreeMapIterator<Entry<K, V>>() {
|
|
||||||
public Entry<K, V> next() {
|
|
||||||
return nextNode();
|
|
||||||
}
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public boolean contains(Object o) {
|
|
||||||
return o instanceof Entry && findByEntry((Entry<?, ?>) o) != null;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public boolean remove(Object o) {
|
|
||||||
if (!(o instanceof Entry)) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
Node<K, V> node = findByEntry((Entry<?, ?>) o);
|
|
||||||
if (node == null) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
removeInternal(node, true);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public void clear() {
|
|
||||||
LinkedHashTreeMap.this.clear();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
final class KeySet extends AbstractSet<K> {
|
|
||||||
@Override
|
|
||||||
public int size() {
|
|
||||||
return size;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public Iterator<K> iterator() {
|
|
||||||
return new LinkedTreeMapIterator<K>() {
|
|
||||||
public K next() {
|
|
||||||
return nextNode().key;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public boolean contains(Object o) {
|
|
||||||
return containsKey(o);
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public boolean remove(Object key) {
|
|
||||||
return removeInternalByKey(key) != null;
|
|
||||||
}
|
|
||||||
|
|
||||||
@Override
|
|
||||||
public void clear() {
|
|
||||||
LinkedHashTreeMap.this.clear();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* If somebody is unlucky enough to have to serialize one of these, serialize it as a
|
|
||||||
* LinkedHashMap so that they won't need Gson on the other side to deserialize it. Using
|
|
||||||
* serialization defeats our DoS defence, so most apps shouldn't use it.
|
|
||||||
*/
|
|
||||||
private Object writeReplace() throws ObjectStreamException {
|
|
||||||
return new LinkedHashMap<>(this);
|
|
||||||
}
|
|
||||||
}
|
|
775
moshi/src/main/java/com/squareup/moshi/LinkedHashTreeMap.kt
Normal file
775
moshi/src/main/java/com/squareup/moshi/LinkedHashTreeMap.kt
Normal file
@@ -0,0 +1,775 @@
|
|||||||
|
package com.squareup.moshi
|
||||||
|
|
||||||
|
import com.squareup.moshi.LinkedHashTreeMap.Node
|
||||||
|
import com.squareup.moshi.internal.knownNotNull
|
||||||
|
import java.io.Serializable
|
||||||
|
import kotlin.math.max
|
||||||
|
|
||||||
|
@Suppress("UNCHECKED_CAST")
|
||||||
|
private val NATURAL_ORDER = Comparator<Any> { o1, o2 -> (o1 as Comparable<Any>).compareTo(o2) }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A map of comparable keys to values. Unlike TreeMap, this class uses insertion order for
|
||||||
|
* iteration order. Comparison order is only used as an optimization for efficient insertion and
|
||||||
|
* removal.
|
||||||
|
*
|
||||||
|
* This implementation was derived from Android 4.1's TreeMap and LinkedHashMap classes.
|
||||||
|
*/
|
||||||
|
internal class LinkedHashTreeMap<K, V>
|
||||||
|
/**
|
||||||
|
* Create a tree map ordered by [comparator]. This map's keys may only be null if [comparator] permits.
|
||||||
|
*
|
||||||
|
* @param comparator the comparator to order elements with, or null to use the natural ordering.
|
||||||
|
*/
|
||||||
|
constructor(
|
||||||
|
comparator: Comparator<Any?>? = null
|
||||||
|
) : AbstractMutableMap<K, V>(), Serializable {
|
||||||
|
@Suppress("UNCHECKED_CAST")
|
||||||
|
private val comparator: Comparator<Any?> = (comparator ?: NATURAL_ORDER) as Comparator<Any?>
|
||||||
|
private var table: Array<Node<K, V>?> = arrayOfNulls(16) // TODO: sizing/resizing policies
|
||||||
|
private val header: Node<K, V> = Node()
|
||||||
|
override var size = 0
|
||||||
|
private var modCount = 0
|
||||||
|
private var threshold = table.size / 2 + table.size / 4 // 3/4 capacity
|
||||||
|
private var entrySet: EntrySet? = null
|
||||||
|
private var keySet: KeySet? = null
|
||||||
|
|
||||||
|
override val keys: MutableSet<K>
|
||||||
|
get() = keySet ?: KeySet().also { keySet = it }
|
||||||
|
|
||||||
|
override fun put(key: K, value: V): V? {
|
||||||
|
val created = findOrCreate(key)
|
||||||
|
val result = created.value
|
||||||
|
created.mutableValue = value
|
||||||
|
return result
|
||||||
|
}
|
||||||
|
|
||||||
|
override val entries: MutableSet<MutableMap.MutableEntry<K, V>>
|
||||||
|
get() = entrySet ?: EntrySet().also { entrySet = it }
|
||||||
|
|
||||||
|
override fun get(key: K) = findByObject(key)?.value
|
||||||
|
|
||||||
|
override fun containsKey(key: K) = findByObject(key) != null
|
||||||
|
|
||||||
|
override fun clear() {
|
||||||
|
table.fill(null)
|
||||||
|
size = 0
|
||||||
|
modCount++
|
||||||
|
|
||||||
|
// Clear all links to help GC
|
||||||
|
val header = header
|
||||||
|
var e = header.next
|
||||||
|
while (e !== header) {
|
||||||
|
val next = e!!.next
|
||||||
|
e.prev = null
|
||||||
|
e.next = null
|
||||||
|
e = next
|
||||||
|
}
|
||||||
|
header.prev = header
|
||||||
|
header.next = header.prev
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun remove(key: K) = removeInternalByKey(key)?.value
|
||||||
|
|
||||||
|
class Node<K, V> : MutableMap.MutableEntry<K, V?> {
|
||||||
|
@JvmField
|
||||||
|
var parent: Node<K, V>? = null
|
||||||
|
|
||||||
|
@JvmField
|
||||||
|
var left: Node<K, V>? = null
|
||||||
|
|
||||||
|
@JvmField
|
||||||
|
var right: Node<K, V>? = null
|
||||||
|
|
||||||
|
@JvmField
|
||||||
|
var next: Node<K, V>?
|
||||||
|
@JvmField
|
||||||
|
var prev: Node<K, V>?
|
||||||
|
|
||||||
|
private var realKey: K? = null
|
||||||
|
|
||||||
|
override val key: K get() = knownNotNull(realKey)
|
||||||
|
|
||||||
|
@JvmField
|
||||||
|
val hash: Int
|
||||||
|
|
||||||
|
@JvmField
|
||||||
|
var mutableValue: V? = null
|
||||||
|
|
||||||
|
override val value: V?
|
||||||
|
get() = mutableValue
|
||||||
|
|
||||||
|
@JvmField
|
||||||
|
var height = 0
|
||||||
|
|
||||||
|
/** Create the header entry. */
|
||||||
|
constructor() {
|
||||||
|
realKey = null
|
||||||
|
hash = -1
|
||||||
|
prev = this
|
||||||
|
next = prev
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Create a regular entry. */
|
||||||
|
constructor(parent: Node<K, V>?, key: K, hash: Int, next: Node<K, V>, prev: Node<K, V>) {
|
||||||
|
this.parent = parent
|
||||||
|
this.realKey = key
|
||||||
|
this.hash = hash
|
||||||
|
height = 1
|
||||||
|
this.next = next
|
||||||
|
this.prev = prev
|
||||||
|
prev.next = this
|
||||||
|
next.prev = this
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun setValue(newValue: V?): V? {
|
||||||
|
val oldValue = this.value
|
||||||
|
this.mutableValue = newValue
|
||||||
|
return oldValue
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun equals(other: Any?): Boolean {
|
||||||
|
if (other is Map.Entry<*, *>) {
|
||||||
|
val (key1, value1) = other
|
||||||
|
return (
|
||||||
|
(if (realKey == null) key1 == null else realKey == key1) &&
|
||||||
|
if (value == null) value1 == null else value == value1
|
||||||
|
)
|
||||||
|
}
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun hashCode(): Int {
|
||||||
|
return (realKey?.hashCode() ?: 0) xor if (value == null) 0 else value.hashCode()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun toString() = "$key=$value"
|
||||||
|
|
||||||
|
/** Returns the first node in this subtree. */
|
||||||
|
fun first(): Node<K, V> {
|
||||||
|
var node = this
|
||||||
|
var child = node.left
|
||||||
|
while (child != null) {
|
||||||
|
node = child
|
||||||
|
child = node.left
|
||||||
|
}
|
||||||
|
return node
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Returns the last node in this subtree. */
|
||||||
|
fun last(): Node<K, V> {
|
||||||
|
var node = this
|
||||||
|
var child = node.right
|
||||||
|
while (child != null) {
|
||||||
|
node = child
|
||||||
|
child = node.right
|
||||||
|
}
|
||||||
|
return node
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private fun doubleCapacity() {
|
||||||
|
table = doubleCapacity(table)
|
||||||
|
threshold = table.size / 2 + table.size / 4 // 3/4 capacity
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the node at or adjacent to the given key, creating it if requested.
|
||||||
|
*
|
||||||
|
* @throws ClassCastException if `key` and the tree's keys aren't mutually comparable.
|
||||||
|
*/
|
||||||
|
private fun findOrCreate(key: K): Node<K, V> {
|
||||||
|
return knownNotNull(find(key, create = true))
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the node at or adjacent to the given key, creating it if requested.
|
||||||
|
*
|
||||||
|
* @throws ClassCastException if `key` and the tree's keys aren't mutually comparable.
|
||||||
|
*/
|
||||||
|
fun find(key: K, create: Boolean): Node<K, V>? {
|
||||||
|
val comparator: Comparator<in K?> = comparator
|
||||||
|
val table = table
|
||||||
|
val hash = secondaryHash(key.hashCode())
|
||||||
|
val index = hash and table.size - 1
|
||||||
|
var nearest = table[index]
|
||||||
|
var comparison = 0
|
||||||
|
if (nearest != null) {
|
||||||
|
// Micro-optimization: avoid polymorphic calls to Comparator.compare().
|
||||||
|
// Throws a ClassCastException below if there's trouble.
|
||||||
|
@Suppress("UNCHECKED_CAST")
|
||||||
|
val comparableKey =
|
||||||
|
if (comparator === NATURAL_ORDER) key as Comparable<Any?> else null
|
||||||
|
while (true) {
|
||||||
|
comparison = comparableKey?.compareTo(knownNotNull(nearest).key) ?: comparator.compare(key, knownNotNull(nearest).key)
|
||||||
|
|
||||||
|
// We found the requested key.
|
||||||
|
if (comparison == 0) {
|
||||||
|
return nearest
|
||||||
|
}
|
||||||
|
|
||||||
|
// If it exists, the key is in a subtree. Go deeper.
|
||||||
|
val child = (if (comparison < 0) knownNotNull(nearest).left else knownNotNull(nearest).right) ?: break
|
||||||
|
nearest = child
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// The key doesn't exist in this tree.
|
||||||
|
if (!create) {
|
||||||
|
return null
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create the node and add it to the tree or the table.
|
||||||
|
val header = header
|
||||||
|
val created: Node<K, V>
|
||||||
|
if (nearest == null) {
|
||||||
|
// Check that the value is comparable if we didn't do any comparisons.
|
||||||
|
if (comparator === NATURAL_ORDER && key !is Comparable<*>) {
|
||||||
|
throw ClassCastException("${(key as Any).javaClass.name} is not Comparable")
|
||||||
|
}
|
||||||
|
created = Node(null, key, hash, header, knownNotNull(header.prev))
|
||||||
|
table[index] = created
|
||||||
|
} else {
|
||||||
|
created = Node(nearest, key, hash, header, knownNotNull(header.prev))
|
||||||
|
if (comparison < 0) { // nearest.key is higher
|
||||||
|
nearest.left = created
|
||||||
|
} else { // comparison > 0, nearest.key is lower
|
||||||
|
nearest.right = created
|
||||||
|
}
|
||||||
|
rebalance(nearest, true)
|
||||||
|
}
|
||||||
|
if (size++ > threshold) {
|
||||||
|
doubleCapacity()
|
||||||
|
}
|
||||||
|
modCount++
|
||||||
|
return created
|
||||||
|
}
|
||||||
|
|
||||||
|
private fun findByObject(key: Any?): Node<K, V>? {
|
||||||
|
return try {
|
||||||
|
@Suppress("UNCHECKED_CAST")
|
||||||
|
if (key != null) find(key as K, false) else null
|
||||||
|
} catch (e: ClassCastException) {
|
||||||
|
null
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns this map's entry that has the same key and value as `entry`, or null if this map
|
||||||
|
* has no such entry.
|
||||||
|
*
|
||||||
|
* This method uses the comparator for key equality rather than `equals`. If this map's
|
||||||
|
* comparator isn't consistent with equals (such as `String.CASE_INSENSITIVE_ORDER`), then
|
||||||
|
* `remove()` and `contains()` will violate the collections API.
|
||||||
|
*/
|
||||||
|
fun findByEntry(entry: Map.Entry<*, *>): Node<K, V>? {
|
||||||
|
val mine = findByObject(entry.key)
|
||||||
|
val valuesEqual = mine != null && equal(mine.value, entry.value)
|
||||||
|
return if (valuesEqual) mine else null
|
||||||
|
}
|
||||||
|
|
||||||
|
private fun equal(a: Any?, b: Any?): Boolean {
|
||||||
|
@Suppress("SuspiciousEqualsCombination")
|
||||||
|
return a === b || a != null && a == b
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Applies a supplemental hash function to a given hashCode, which defends against poor quality
|
||||||
|
* hash functions. This is critical because HashMap uses power-of-two length hash tables, that
|
||||||
|
* otherwise encounter collisions for hashCodes that do not differ in lower or upper bits.
|
||||||
|
*/
|
||||||
|
private fun secondaryHash(seed: Int): Int {
|
||||||
|
// Doug Lea's supplemental hash function
|
||||||
|
var h = seed
|
||||||
|
h = h xor (h ushr 20 xor (h ushr 12))
|
||||||
|
return h xor (h ushr 7) xor (h ushr 4)
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Removes `node` from this tree, rearranging the tree's structure as necessary.
|
||||||
|
*
|
||||||
|
* @param unlink true to also unlink this node from the iteration linked list.
|
||||||
|
*/
|
||||||
|
fun removeInternal(node: Node<K, V>, unlink: Boolean) {
|
||||||
|
if (unlink) {
|
||||||
|
knownNotNull(node.prev).next = node.next
|
||||||
|
knownNotNull(node.next).prev = node.prev
|
||||||
|
node.prev = null
|
||||||
|
node.next = null // Help the GC (for performance)
|
||||||
|
}
|
||||||
|
var left = node.left
|
||||||
|
var right = node.right
|
||||||
|
val originalParent = node.parent
|
||||||
|
if (left != null && right != null) {
|
||||||
|
/*
|
||||||
|
* To remove a node with both left and right subtrees, move an
|
||||||
|
* adjacent node from one of those subtrees into this node's place.
|
||||||
|
*
|
||||||
|
* Removing the adjacent node may change this node's subtrees. This
|
||||||
|
* node may no longer have two subtrees once the adjacent node is
|
||||||
|
* gone!
|
||||||
|
*/
|
||||||
|
val adjacent = if (left.height > right.height) left.last() else right.first()
|
||||||
|
removeInternal(adjacent, false) // takes care of rebalance and size--
|
||||||
|
var leftHeight = 0
|
||||||
|
left = node.left
|
||||||
|
if (left != null) {
|
||||||
|
leftHeight = left.height
|
||||||
|
adjacent.left = left
|
||||||
|
left.parent = adjacent
|
||||||
|
node.left = null
|
||||||
|
}
|
||||||
|
var rightHeight = 0
|
||||||
|
right = node.right
|
||||||
|
if (right != null) {
|
||||||
|
rightHeight = right.height
|
||||||
|
adjacent.right = right
|
||||||
|
right.parent = adjacent
|
||||||
|
node.right = null
|
||||||
|
}
|
||||||
|
adjacent.height = max(leftHeight, rightHeight) + 1
|
||||||
|
replaceInParent(node, adjacent)
|
||||||
|
return
|
||||||
|
} else if (left != null) {
|
||||||
|
replaceInParent(node, left)
|
||||||
|
node.left = null
|
||||||
|
} else if (right != null) {
|
||||||
|
replaceInParent(node, right)
|
||||||
|
node.right = null
|
||||||
|
} else {
|
||||||
|
replaceInParent(node, null)
|
||||||
|
}
|
||||||
|
rebalance(originalParent, false)
|
||||||
|
size--
|
||||||
|
modCount++
|
||||||
|
}
|
||||||
|
|
||||||
|
fun removeInternalByKey(key: Any?): Node<K, V>? {
|
||||||
|
val node = findByObject(key)
|
||||||
|
if (node != null) {
|
||||||
|
removeInternal(node, true)
|
||||||
|
}
|
||||||
|
return node
|
||||||
|
}
|
||||||
|
|
||||||
|
private fun replaceInParent(node: Node<K, V>, replacement: Node<K, V>?) {
|
||||||
|
val parent = node.parent
|
||||||
|
node.parent = null
|
||||||
|
if (replacement != null) {
|
||||||
|
replacement.parent = parent
|
||||||
|
}
|
||||||
|
if (parent != null) {
|
||||||
|
if (parent.left === node) {
|
||||||
|
parent.left = replacement
|
||||||
|
} else {
|
||||||
|
assert(parent.right === node)
|
||||||
|
parent.right = replacement
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
val index = node.hash and table.size - 1
|
||||||
|
table[index] = replacement
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Rebalances the tree by making any AVL rotations necessary between the newly-unbalanced node and
|
||||||
|
* the tree's root.
|
||||||
|
*
|
||||||
|
* @param insert true if the node was unbalanced by an insert; false if it was by a removal.
|
||||||
|
*/
|
||||||
|
private fun rebalance(unbalanced: Node<K, V>?, insert: Boolean) {
|
||||||
|
var node = unbalanced
|
||||||
|
while (node != null) {
|
||||||
|
val left = node.left
|
||||||
|
val right = node.right
|
||||||
|
val leftHeight = left?.height ?: 0
|
||||||
|
val rightHeight = right?.height ?: 0
|
||||||
|
val delta = leftHeight - rightHeight
|
||||||
|
when (delta) {
|
||||||
|
-2 -> {
|
||||||
|
val rightLeft = right!!.left
|
||||||
|
val rightRight = right.right
|
||||||
|
val rightRightHeight = rightRight?.height ?: 0
|
||||||
|
val rightLeftHeight = rightLeft?.height ?: 0
|
||||||
|
val rightDelta = rightLeftHeight - rightRightHeight
|
||||||
|
if (rightDelta != -1 && (rightDelta != 0 || insert)) {
|
||||||
|
assert(rightDelta == 1)
|
||||||
|
rotateRight(right) // AVL right left
|
||||||
|
}
|
||||||
|
rotateLeft(node) // AVL right right
|
||||||
|
if (insert) {
|
||||||
|
break // no further rotations will be necessary
|
||||||
|
}
|
||||||
|
}
|
||||||
|
2 -> {
|
||||||
|
val leftLeft = left!!.left
|
||||||
|
val leftRight = left.right
|
||||||
|
val leftRightHeight = leftRight?.height ?: 0
|
||||||
|
val leftLeftHeight = leftLeft?.height ?: 0
|
||||||
|
val leftDelta = leftLeftHeight - leftRightHeight
|
||||||
|
if (leftDelta != 1 && (leftDelta != 0 || insert)) {
|
||||||
|
assert(leftDelta == -1)
|
||||||
|
rotateLeft(left) // AVL left right
|
||||||
|
}
|
||||||
|
rotateRight(node) // AVL left left
|
||||||
|
if (insert) {
|
||||||
|
break // no further rotations will be necessary
|
||||||
|
}
|
||||||
|
}
|
||||||
|
0 -> {
|
||||||
|
node.height = leftHeight + 1 // leftHeight == rightHeight
|
||||||
|
if (insert) {
|
||||||
|
break // the insert caused balance, so rebalancing is done!
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else -> {
|
||||||
|
assert(delta == -1 || delta == 1)
|
||||||
|
node.height = max(leftHeight, rightHeight) + 1
|
||||||
|
if (!insert) {
|
||||||
|
break // the height hasn't changed, so rebalancing is done!
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
node = node.parent
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Rotates the subtree so that its root's right child is the new root. */
|
||||||
|
private fun rotateLeft(root: Node<K, V>) {
|
||||||
|
val left = root.left
|
||||||
|
val pivot = root.right
|
||||||
|
val pivotLeft = pivot!!.left
|
||||||
|
val pivotRight = pivot.right
|
||||||
|
|
||||||
|
// move the pivot's left child to the root's right
|
||||||
|
root.right = pivotLeft
|
||||||
|
if (pivotLeft != null) {
|
||||||
|
pivotLeft.parent = root
|
||||||
|
}
|
||||||
|
replaceInParent(root, pivot)
|
||||||
|
|
||||||
|
// move the root to the pivot's left
|
||||||
|
pivot.left = root
|
||||||
|
root.parent = pivot
|
||||||
|
|
||||||
|
// fix heights
|
||||||
|
root.height = max(left?.height ?: 0, pivotLeft?.height ?: 0) + 1
|
||||||
|
pivot.height = max(root.height, pivotRight?.height ?: 0) + 1
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Rotates the subtree so that its root's left child is the new root. */
|
||||||
|
private fun rotateRight(root: Node<K, V>) {
|
||||||
|
val pivot = root.left
|
||||||
|
val right = root.right
|
||||||
|
val pivotLeft = pivot!!.left
|
||||||
|
val pivotRight = pivot.right
|
||||||
|
|
||||||
|
// move the pivot's right child to the root's left
|
||||||
|
root.left = pivotRight
|
||||||
|
if (pivotRight != null) {
|
||||||
|
pivotRight.parent = root
|
||||||
|
}
|
||||||
|
replaceInParent(root, pivot)
|
||||||
|
|
||||||
|
// move the root to the pivot's right
|
||||||
|
pivot.right = root
|
||||||
|
root.parent = pivot
|
||||||
|
|
||||||
|
// fixup heights
|
||||||
|
root.height = max(right?.height ?: 0, pivotRight?.height ?: 0) + 1
|
||||||
|
pivot.height = max(root.height, pivotLeft?.height ?: 0) + 1
|
||||||
|
}
|
||||||
|
|
||||||
|
abstract inner class LinkedTreeMapIterator<T> : MutableIterator<T> {
|
||||||
|
var next = header.next
|
||||||
|
private var lastReturned: Node<K, V>? = null
|
||||||
|
private var expectedModCount: Int = modCount
|
||||||
|
override fun hasNext(): Boolean = next !== header
|
||||||
|
|
||||||
|
fun nextNode(): Node<K, V> {
|
||||||
|
val e = next
|
||||||
|
if (e === header) {
|
||||||
|
throw NoSuchElementException()
|
||||||
|
}
|
||||||
|
if (modCount != expectedModCount) {
|
||||||
|
throw ConcurrentModificationException()
|
||||||
|
}
|
||||||
|
next = e!!.next
|
||||||
|
return e.also { lastReturned = it }
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun remove() {
|
||||||
|
removeInternal(checkNotNull(lastReturned), true)
|
||||||
|
lastReturned = null
|
||||||
|
expectedModCount = modCount
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
inner class EntrySet : AbstractMutableSet<MutableMap.MutableEntry<K, V>>() {
|
||||||
|
override val size: Int
|
||||||
|
get() = this@LinkedHashTreeMap.size
|
||||||
|
|
||||||
|
override fun iterator(): MutableIterator<MutableMap.MutableEntry<K, V>> {
|
||||||
|
return object : LinkedTreeMapIterator<MutableMap.MutableEntry<K, V>>() {
|
||||||
|
override fun next(): MutableMap.MutableEntry<K, V> {
|
||||||
|
@Suppress("UNCHECKED_CAST")
|
||||||
|
return nextNode() as MutableMap.MutableEntry<K, V>
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun contains(element: MutableMap.MutableEntry<K, V>): Boolean {
|
||||||
|
return findByEntry(element) != null
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun remove(element: MutableMap.MutableEntry<K, V>): Boolean {
|
||||||
|
if (element !is Node<*, *>) {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
val node: Node<K, V> = findByEntry(element) ?: return false
|
||||||
|
removeInternal(node, true)
|
||||||
|
return true
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun clear() {
|
||||||
|
this@LinkedHashTreeMap.clear()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun add(element: MutableMap.MutableEntry<K, V>): Boolean {
|
||||||
|
throw NotImplementedError()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
inner class KeySet : AbstractMutableSet<K>() {
|
||||||
|
override val size: Int
|
||||||
|
get() = this@LinkedHashTreeMap.size
|
||||||
|
|
||||||
|
override fun iterator(): MutableIterator<K> {
|
||||||
|
return object : LinkedTreeMapIterator<K>() {
|
||||||
|
override fun next(): K {
|
||||||
|
return nextNode().key ?: throw NoSuchElementException()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun contains(element: K): Boolean {
|
||||||
|
return containsKey(element)
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun remove(element: K): Boolean {
|
||||||
|
return removeInternalByKey(element) != null
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun clear() {
|
||||||
|
this@LinkedHashTreeMap.clear()
|
||||||
|
}
|
||||||
|
|
||||||
|
override fun add(element: K): Boolean {
|
||||||
|
throw NotImplementedError()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* If somebody is unlucky enough to have to serialize one of these, serialize it as a
|
||||||
|
* LinkedHashMap so that they won't need Gson on the other side to deserialize it. Using
|
||||||
|
* serialization defeats our DoS defence, so most apps shouldn't use it.
|
||||||
|
*/
|
||||||
|
private fun writeReplace(): Any = LinkedHashMap(this)
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns a new array containing the same nodes as `oldTable`, but with twice as many
|
||||||
|
* trees, each of (approximately) half the previous size.
|
||||||
|
*/
|
||||||
|
internal fun <K, V> doubleCapacity(oldTable: Array<Node<K, V>?>): Array<Node<K, V>?> {
|
||||||
|
// TODO: don't do anything if we're already at MAX_CAPACITY
|
||||||
|
val oldCapacity = oldTable.size
|
||||||
|
// Arrays and generics don't get along.
|
||||||
|
val newTable: Array<Node<K, V>?> = arrayOfNulls<Node<K, V>?>(oldCapacity * 2)
|
||||||
|
val iterator = AvlIterator<K, V>()
|
||||||
|
val leftBuilder = AvlBuilder<K, V>()
|
||||||
|
val rightBuilder = AvlBuilder<K, V>()
|
||||||
|
|
||||||
|
// Split each tree into two trees.
|
||||||
|
for (i in 0 until oldCapacity) {
|
||||||
|
val root = oldTable[i] ?: continue
|
||||||
|
|
||||||
|
// Compute the sizes of the left and right trees.
|
||||||
|
iterator.reset(root)
|
||||||
|
var leftSize = 0
|
||||||
|
var rightSize = 0
|
||||||
|
run {
|
||||||
|
var node: Node<K, V>?
|
||||||
|
while (iterator.next().also { node = it } != null) {
|
||||||
|
if (knownNotNull(node).hash and oldCapacity == 0) {
|
||||||
|
leftSize++
|
||||||
|
} else {
|
||||||
|
rightSize++
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Split the tree into two.
|
||||||
|
leftBuilder.reset(leftSize)
|
||||||
|
rightBuilder.reset(rightSize)
|
||||||
|
iterator.reset(root)
|
||||||
|
var node: Node<K, V>?
|
||||||
|
while (iterator.next().also { node = it } != null) {
|
||||||
|
if (knownNotNull(node).hash and oldCapacity == 0) {
|
||||||
|
leftBuilder.add(knownNotNull(node))
|
||||||
|
} else {
|
||||||
|
rightBuilder.add(knownNotNull(node))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Populate the enlarged array with these new roots.
|
||||||
|
newTable[i] = if (leftSize > 0) leftBuilder.root() else null
|
||||||
|
newTable[i + oldCapacity] = if (rightSize > 0) rightBuilder.root() else null
|
||||||
|
}
|
||||||
|
return newTable
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Walks an AVL tree in iteration order. Once a node has been returned, its left, right and parent
|
||||||
|
* links are **no longer used**. For this reason it is safe to transform these links
|
||||||
|
* as you walk a tree.
|
||||||
|
*
|
||||||
|
* **Warning:** this iterator is destructive. It clears the parent node of all
|
||||||
|
* nodes in the tree. It is an error to make a partial iteration of a tree.
|
||||||
|
*/
|
||||||
|
internal class AvlIterator<K, V> {
|
||||||
|
/** This stack is a singly linked list, linked by the 'parent' field. */
|
||||||
|
private var stackTop: Node<K, V>? = null
|
||||||
|
fun reset(root: Node<K, V>?) {
|
||||||
|
var stackTop: Node<K, V>? = null
|
||||||
|
var n = root
|
||||||
|
while (n != null) {
|
||||||
|
n.parent = stackTop
|
||||||
|
stackTop = n // Stack push.
|
||||||
|
n = n.left
|
||||||
|
}
|
||||||
|
this.stackTop = stackTop
|
||||||
|
}
|
||||||
|
|
||||||
|
operator fun next(): Node<K, V>? {
|
||||||
|
var stackTop: Node<K, V>? = stackTop ?: return null
|
||||||
|
val result = stackTop
|
||||||
|
stackTop = result!!.parent
|
||||||
|
result.parent = null
|
||||||
|
var n = result.right
|
||||||
|
while (n != null) {
|
||||||
|
n.parent = stackTop
|
||||||
|
stackTop = n // Stack push.
|
||||||
|
n = n.left
|
||||||
|
}
|
||||||
|
this.stackTop = stackTop
|
||||||
|
return result
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Builds AVL trees of a predetermined size by accepting nodes of increasing value. To use:
|
||||||
|
* 1. Call [reset] to initialize the target size *size*.
|
||||||
|
* 2. Call [add] *size* times with increasing values.
|
||||||
|
* 3. Call [root] to get the root of the balanced tree.
|
||||||
|
*
|
||||||
|
* The returned tree will satisfy the AVL constraint: for every node *N*, the height of
|
||||||
|
* *N.left* and *N.right* is different by at most 1. It accomplishes this by omitting
|
||||||
|
* deepest-level leaf nodes when building trees whose size isn't a power of 2 minus 1.
|
||||||
|
*
|
||||||
|
* Unlike rebuilding a tree from scratch, this approach requires no value comparisons. Using
|
||||||
|
* this class to create a tree of size *S* is `O(S)`.
|
||||||
|
*/
|
||||||
|
internal class AvlBuilder<K, V> {
|
||||||
|
/** This stack is a singly linked list, linked by the 'parent' field. */
|
||||||
|
private var stack: Node<K, V>? = null
|
||||||
|
private var leavesToSkip = 0
|
||||||
|
private var leavesSkipped = 0
|
||||||
|
private var size = 0
|
||||||
|
fun reset(targetSize: Int) {
|
||||||
|
// compute the target tree size. This is a power of 2 minus one, like 15 or 31.
|
||||||
|
val treeCapacity = Integer.highestOneBit(targetSize) * 2 - 1
|
||||||
|
leavesToSkip = treeCapacity - targetSize
|
||||||
|
size = 0
|
||||||
|
leavesSkipped = 0
|
||||||
|
stack = null
|
||||||
|
}
|
||||||
|
|
||||||
|
fun add(node: Node<K, V>) {
|
||||||
|
node.right = null
|
||||||
|
node.parent = null
|
||||||
|
node.left = null
|
||||||
|
node.height = 1
|
||||||
|
|
||||||
|
// Skip a leaf if necessary.
|
||||||
|
if (leavesToSkip > 0 && size and 1 == 0) {
|
||||||
|
size++
|
||||||
|
leavesToSkip--
|
||||||
|
leavesSkipped++
|
||||||
|
}
|
||||||
|
node.parent = stack
|
||||||
|
stack = node // Stack push.
|
||||||
|
size++
|
||||||
|
|
||||||
|
// Skip a leaf if necessary.
|
||||||
|
if (leavesToSkip > 0 && size and 1 == 0) {
|
||||||
|
size++
|
||||||
|
leavesToSkip--
|
||||||
|
leavesSkipped++
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Combine 3 nodes into subtrees whenever the size is one less than a
|
||||||
|
* multiple of 4. For example, we combine the nodes A, B, C into a
|
||||||
|
* 3-element tree with B as the root.
|
||||||
|
*
|
||||||
|
* Combine two subtrees and a spare single value whenever the size is one
|
||||||
|
* less than a multiple of 8. For example at 8 we may combine subtrees
|
||||||
|
* (A B C) and (E F G) with D as the root to form ((A B C) D (E F G)).
|
||||||
|
*
|
||||||
|
* Just as we combine single nodes when size nears a multiple of 4, and
|
||||||
|
* 3-element trees when size nears a multiple of 8, we combine subtrees of
|
||||||
|
* size (N-1) whenever the total size is 2N-1 whenever N is a power of 2.
|
||||||
|
*/
|
||||||
|
var scale = 4
|
||||||
|
while (size and scale - 1 == scale - 1) {
|
||||||
|
when (leavesSkipped) {
|
||||||
|
0 -> {
|
||||||
|
// Pop right, center and left, then make center the top of the stack.
|
||||||
|
val right = stack
|
||||||
|
val center = right!!.parent
|
||||||
|
val left = center!!.parent
|
||||||
|
center.parent = left!!.parent
|
||||||
|
stack = center
|
||||||
|
// Construct a tree.
|
||||||
|
center.left = left
|
||||||
|
center.right = right
|
||||||
|
center.height = right.height + 1
|
||||||
|
left.parent = center
|
||||||
|
right.parent = center
|
||||||
|
}
|
||||||
|
1 -> {
|
||||||
|
// Pop right and center, then make center the top of the stack.
|
||||||
|
val right = stack
|
||||||
|
val center = right!!.parent
|
||||||
|
stack = center!!
|
||||||
|
// Construct a tree with no left child.
|
||||||
|
center.right = right
|
||||||
|
center.height = right.height + 1
|
||||||
|
right.parent = center
|
||||||
|
leavesSkipped = 0
|
||||||
|
}
|
||||||
|
2 -> {
|
||||||
|
leavesSkipped = 0
|
||||||
|
}
|
||||||
|
}
|
||||||
|
scale *= 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fun root(): Node<K, V> {
|
||||||
|
val stackTop = stack
|
||||||
|
check(stackTop!!.parent == null)
|
||||||
|
return stackTop
|
||||||
|
}
|
||||||
|
}
|
@@ -18,14 +18,13 @@ package com.squareup.moshi;
|
|||||||
import static com.google.common.truth.Truth.assertThat;
|
import static com.google.common.truth.Truth.assertThat;
|
||||||
import static org.junit.Assert.fail;
|
import static org.junit.Assert.fail;
|
||||||
|
|
||||||
import com.squareup.moshi.LinkedHashTreeMap.AvlBuilder;
|
|
||||||
import com.squareup.moshi.LinkedHashTreeMap.AvlIterator;
|
|
||||||
import com.squareup.moshi.LinkedHashTreeMap.Node;
|
import com.squareup.moshi.LinkedHashTreeMap.Node;
|
||||||
import java.util.Iterator;
|
import java.util.Iterator;
|
||||||
import java.util.Map;
|
import java.util.Map;
|
||||||
import java.util.Random;
|
import java.util.Random;
|
||||||
import org.junit.Test;
|
import org.junit.Test;
|
||||||
|
|
||||||
|
@SuppressWarnings("KotlinInternalInJava")
|
||||||
public final class LinkedHashTreeMapTest {
|
public final class LinkedHashTreeMapTest {
|
||||||
@Test
|
@Test
|
||||||
public void iterationOrder() {
|
public void iterationOrder() {
|
||||||
@@ -228,7 +227,7 @@ public final class LinkedHashTreeMapTest {
|
|||||||
Node<String, String>[] oldTable = new Node[1];
|
Node<String, String>[] oldTable = new Node[1];
|
||||||
oldTable[0] = node(node(node("a"), "b", node("c")), "d", node(node("e"), "f", node("g")));
|
oldTable[0] = node(node(node("a"), "b", node("c")), "d", node(node("e"), "f", node("g")));
|
||||||
|
|
||||||
Node<String, String>[] newTable = LinkedHashTreeMap.doubleCapacity(oldTable);
|
Node<String, String>[] newTable = LinkedHashTreeMapKt.doubleCapacity(oldTable);
|
||||||
assertTree("(b d f)", newTable[0]); // Even hash codes!
|
assertTree("(b d f)", newTable[0]); // Even hash codes!
|
||||||
assertTree("(a c (. e g))", newTable[1]); // Odd hash codes!
|
assertTree("(a c (. e g))", newTable[1]); // Odd hash codes!
|
||||||
}
|
}
|
||||||
@@ -239,7 +238,7 @@ public final class LinkedHashTreeMapTest {
|
|||||||
Node<String, String>[] oldTable = new Node[1];
|
Node<String, String>[] oldTable = new Node[1];
|
||||||
oldTable[0] = node(node("b"), "d", node("f"));
|
oldTable[0] = node(node("b"), "d", node("f"));
|
||||||
|
|
||||||
Node<String, String>[] newTable = LinkedHashTreeMap.doubleCapacity(oldTable);
|
Node<String, String>[] newTable = LinkedHashTreeMapKt.doubleCapacity(oldTable);
|
||||||
assertTree("(b d f)", newTable[0]); // Even hash codes!
|
assertTree("(b d f)", newTable[0]); // Even hash codes!
|
||||||
assertThat(newTable[1]).isNull();
|
assertThat(newTable[1]).isNull();
|
||||||
|
|
||||||
@@ -300,9 +299,9 @@ public final class LinkedHashTreeMapTest {
|
|||||||
if (root == null) {
|
if (root == null) {
|
||||||
return ".";
|
return ".";
|
||||||
} else if (root.left == null && root.right == null) {
|
} else if (root.left == null && root.right == null) {
|
||||||
return String.valueOf(root.key);
|
return String.valueOf(root.getKey());
|
||||||
} else {
|
} else {
|
||||||
return String.format("(%s %s %s)", toString(root.left), root.key, toString(root.right));
|
return String.format("(%s %s %s)", toString(root.left), root.getKey(), toString(root.right));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Reference in New Issue
Block a user